Definition and Importance of Excipients in Medicinal Products

Excipients are essential but integral components of medicines. They perform several functions that are important for the safe use of medical products. However, there still remains a lot of ambiguity on what excipients are, their safety and if they should be removed from products, especially products intended for very young children. This article aims to answer all these and many other questions you have always had but did not who to ask or where to find answers.

 

What is a Pharmaceutical Excipient?

An excipient is defined as any ingredient other than the active ingredient(s) included in formulations of therapeutic goods, such as medicines, vaccines and medical devices. Excipients are also used in some cosmetic products, and nutraceutical food supplements.

In most products, excipients constitute the largest component of the formulation, being anywhere from 40 to 99+ percent by weight. This is why excipients are often referred to as ‘bulking’ agents.

If we take the example of PANADOL tablets – a commonly used pain killer medicine, each PANADOL tablet contains 500mg of paracetamol, which is the active ingredient. However, there are other ingredients in the product, as outlined below:

All the listed ingredients with the exception of paracetamol are the excipients in this product. They are typically listed in in the SmPC document (Summary Product Characteristics), which you can find by searching in a public compendia, such as the Electronic Medical Compendium.

 

Functions of Excipients in Medicinal Products

Excipients aid processing, disintegration and dissolution in the body and help protect the drug substance against unfavourable conditions, both in vivo and in vitro.

They also provide bulk, so that the product can be easily picked by the patient and conveniently used. This can be a big challenge for elderly patients or very young children. Click here to read our article highlighting the importance of empathy in new drug development. We also recently discussed the importance of dysphagia and odynophagia (swallowing problems) and how they create health inequalities if not addressed by pharmaceutical companies, which you can read through this link.

Suffice to say all the different functions undertaken by excipients work together to permit companies such as Glaxo, Astra Zeneca or Pfizer (and many others which you can see listed here) to manufacture safe, efficacious drug products that meet the quality standards set by health authorities, such as the US Federal Drug Agency (FDA), European Medicines Agency (EMA), or the Medicines and Healthcare products Regulatory Agency, and countless others around the world.

The interrelationship between excipient functionality and the pharmacological activity of the active ingredient is illustrated in this infographic below:

<img src="excipientsapiinterrelationship.jpg" alt=excipients api interrelationship">

Origins of the word ‘excipient’

There are several (often conflicting) opinions on the origin of the word, excipient. What seems certain is its etymological basis, which is the Latin word excipiēns, the present participle of excipere. Excipere essentially means ‘to take out’ and translates into, in the modern sense, ‘everything else other than’. Thus, we can envisage excipients as materials other than active principles, used to aid the processing, elaboration or manufacture of the medicinal, cosmetic or nutraceutical products.

Such ingredients include materials used to protect, support or enhance the product’s quality, safety, stability, availability, acceptability and identity, or enhance any other attribute that allow products to be used safely and effectively.

Are Excipients Inactive?

An important question today, at least within the excipients space, is whether excipients are inactive, that is, passive bystanders that do nothing other than to hung about in products. Some have gone as far as to say that these materials are unnecessarily added into products for marketing purposes and should be avoided by consumers. This is understandable.

We can say for certain that for the most past, excipients are inert (or correctly, intended to be biologically inert). But this is not without exceptions. Generally, natural or partly-natural excipients, many of which are part of the normal human diet, are biologically inert, that is, they do not elicit a pharmacological effect. The definition of natural and nature-inspired excipients is provided in this article, which you can read by clicking through this link.

Examples of such excipients include, but are not limited to the below:

Many other fully synthetic substances, such as povidone, acrylic copolymers and inorganic minerals (such as calcium carbonate and calcium phosphate) are also established as inert.

Within the pharmaceutical sector, the principal requirement for any excipient is functionality, which simply refers to fitness for a named purpose. But fitness for one use does not mean fitness for use in another, and depending on factors such as route of administration, age, patient group or dosage, a material that is fine for oral use may be hazardous when injected or inhaled.

We also know for certain that, while adverse reactions to excipients are generally rare, they still do occur, and excipients can be hazardous especially when they are not used correctly. This is why consumers are advised to always read labels and liaise with health care professionals to avoid the use of products that might contain ingredients likely to cause adverse events. Click here to read about safety assessments of excipients.

Many excipients have caused problems in paediatric and adult patients, thus the idea that excipients are inactive materials is somewhat misleading, and possibly dangerous .

Examples of well-documented, non-biologically active or ‘problem’ excipients are listed in the table below:

Excipient name/classReported issues/problemsSources
SulfitesWheezing, dyspnoea and anaphylactoid reactionFlorence A T (2010), An Introduction to Clinical Pharmaceutics, Pharm Press
Benzalkonium chlorideBronchoconstrictionFlorence A T (2010), An Introduction to Clinical Pharmaceutics, Pharm Press
AspartameHeadaches and hypersensitivity Several
SaccharinDermatological reactions; should be avoided in children with sulfar allergiesSeveral
Benzyl alcoholIn high concentrations, potentially lethal in neonatesSeveral
Various dyesCross-sensitivity, headaches, urticaria, exacerbation of asthma symptomsSeveral
LactoseProblematic in lactase deficient individualsSeveral
Propylene glycolLocalised contact dermatitits when used topically, lactic acidosis after absorptionFlorence A T (2010), An Introduction to Clinical Pharmaceutics, Pharm Press
TalcAcute respiratory distress syndromeUS FDA
Tocopherol Polyethylene Glycol (TPGS)Inhibition of P-gp mediated transportBoman et al., J Pharm Sci (2003), 92: 1250-1261
PolysorbateInhibition of P-gp mediated transportBoman et al., J Pharm Sci (2003), 92: 1250-1261
polyethoxylated castor oilInhibition of P-gp mediated transportBoman et al., J Pharm Sci (2003), 92: 1250-1261
Polyethylene glycolInhibition of P-gp mediated transportBoman et al., J Pharm Sci (2003), 92: 1250-1261

Types of Excipients

The are many different classes of excipients as are product categories. The Handbook of Pharmaceutical Excipients, an influential reference on excipients, currently lists over 400 materials. They differ by chemical properties, function and source (mineral, natural or synthetic). They may be in the form of liquids, semi-solids, solids as well as gases.

A list of different materials classified by chemical group, function and source is shown below:

Chemical GroupExamples
Hydrocolloid gumsPectin, Xanthan gum, Acacia, Agar
Mineral claysBentonite, Kaolin
Cellulose polymersHypromellose, Ethylcellulose, Microcrystalline cellulose
StarchesMaize starch, Tapioca starch, Potato starch
Amino acids & ProteinsAlbumin, Glycine
Sugars & PolysaccharidesDextrose, Polydextrose, Fructose, Lactose
Vinyl polymersPolyvinyl alcohol
MineralsCalcium carbonate, Magnesium carbonate, Sodium chloride
PetrochemicalsLiquid paraffin
SiliconesDimethicone, Cyclomethicone, Simethicone
PolyolsSorbitol, Mannitol, Maltitol, Xylitol
Acrylic polymersCarbomers
Organic & Inorganic compoundsCitric acid, Ethylparaben
Triglycerides, Oleochemicals & DerivativesGlyceryl monostearate, Oleic aicd, Magnesium stearate
GlycolsPolyethylene glycol, Polyethylene oxide
Alkoxides & SilicatesSilica, Calcium silicate
FunctionExamples
Emulsifiers & SurfactantsSodium lauryl sulfate, Tween 80, Hydrogenated castor oil
Fillers & DiluentsLactose, Microcrystalline cellulose, Maize starch, Calcium phosphate
Film coatingsHypromellose, Ethylcellulose, Polyvinyl alcohol
BindersMaize starch, Povidone, Sodium carmellose
Sweeteners & FlavoursSucralose, Xylitol, Acesulfame K, Strawberry flavour
PlasticizersSorbitol, Triethylcitrate, Glycerine
Drug release modifiersPolyethylene oxide, Hypromellose, Ethylcellulose
Solvents & SolubilisersEthanol, Cyclomethicone
Viscosity modifiers & Suspending agentsXanthan gum, Sodium carmellose
Antioxidants & Stabilising agentsVitamin C, Vitamin E
Vaccine adjuvantsAluminium hydroxide
Gelling agentsCarbomers, Pectin, Carrageenan
Glidants, Lubricants & Anti-sticking agentsSilica, Magnesium stearate, Talc
PreservativesEthylparaben, Potassium sorbate, Benzalkonium chloride
Disintegrating agentsStarch, Sodium starch glycolate
Buffers & pH modifiersSodium hydrogen carbonate, Phosphoric acid
Excipient SourceExamples
Chemical synthesisSodium lauryl sulfate, Tween 80, Carbomer
MineralsTalcum, Kaolin, Calcium carbonate, Sodium chloride
Plant derivedMaize starch, Glucose, Mannitol
Animal derivedLactose, Gelatin
Products of fermentationXanthan gum

Excipients Used in Oral Solid Products

The oral route, and specifically, oral solids (mainly tablets, capsules and powders) is the most widely used route for administration of pharmaceutical products. Some studies indicate that the oral route accounts for over 80% of all medicines administered. Here is a list of the top 20 excipients most commonly used in oral solid dose formulations, including granulation binders, diluents for tablets and capsules, disintegrants, lubricants, antiadherents, glidants, colouring agents and flavours.

Common NameMain Function
AlginatesBinder and disintegrating agent
Calcium carbonateFiller, diluent, pigment & source of calcium. Opacifier & colorant
Calcium phosphate (all grades)Filler, diluent, pigment & source of calcium
GelatinCoating agent & binder
Croscarmellose sodiumDisintegrating agent
CrospovidoneDisintegrating agent
Povidone (PVP)Tablet binder
Silicon dioxideGlidant
Sodium starch glycolateDisintegrating agent
Dextrose (glucose)Filler, diluent & binder
Functional & Aesthetic coatingsAesthetics & modified drug release
Lactose (Spray-dried, monohydrate & anhydrous)Filler & diluent
Magnesium stearateLubricant
MannitolFiller & diluent
Native & modified starchesFiller, binder & disintegrating agent
SorbitolFiller & diluent
Microcrystalline celluloseFiller & dry binder
Sodium bicarbonateFiller & alkalising agent
HypromelloseBinder & modified-release agent
Sodium chlorideDiluent & tonicity agent

Excipients Used in Oral Liquid Products

Suspensions and oral liquids are an important dosage form particularly in children and the elderly or when drug products have poor solubility or cannot be formulated into tablets or capsules.

The top 12 excipients used in pharmaceutical suspensions, including syrup or dry suspensions are shown below.

Xanthan gumSuspending agent and viscosity modifier
Polyethylene glycol (mainly PEG 400)Solvent and Co-solvent
CarboxymethylcelluloseSuspending agent and viscosity-increasing agent
Flavours (mainly citrus, strawberry & vanilla)Taste masking and flavour enhancement of bitter products
GlucoseSweetener
MaltitolSuspending agent & diluent
SucroseSuspending agent, viscosity modifier and sweetener
EthanolSolvent & Co-solvent
SorbitolSweetener, Suspending agent & diluent
SucraloseTaste masking and flavour enhancement of bitter products
Propylene glycolSolvent & Co-solvent, flavour enhancer
PolysorbateSurfactant and dispersing aid
Parabens (All)Preservatives
Acesulfame PotassiumSweetener
Sodium/Potassium BenzoatePreservative

Excipients Used in Topical Products

Administration of medicines through the skin is referred to as ‘transdermal drug delivery’. It has grown in importance in recent decades owing to several advantages, including:

  • improved patient adherence
  • convenience
  • options for sustained and controlled release
  • avoidance of gastric irritation, and
  • avoidance of first-pass effect

Even though excipients used in topical products are not intended to be swallowed, they must be safe and comply with pharmacopoeia standards and meet expected quality standards.

A list of the top 15 commonly used topical excipients include:

ExcipientFunction
Carbomers (all)Viscosity increasing agents, Suspending agents, Emollients & Moisturizer
Petrolatum & Mineral OilsEmollient & Skin conditioner, Carrier
GlycerinMoisturiser and Co-solvent
Glyceryl MonostearateEmulsifier and Co-emulsifier
Cetostearyl AlcoholEmollient, Skin emulsifieir & Viscosity-increasing agent
Polyethylene GlycolGelling agent, Solvent & Co-solvent
Parabens (Methy, Propyl & Butyl)Preservatives
Tocopherol (Vitamin E)Antioxidant & Skin conditioner
Dimethicone & CyclomethiconeEmollient, Skin conditioner & Carrier
Waxes (Bees, Microcrystalline & Others)Refatting & Stiffening agent
Vegetable OilsEmollient & Carrier
Isopropyl MyristateEmollient, Skin penetrant & Carrier
Glyceryl MonooleateBioadhesive material, Emollient & Emulsifier
Hard FatsSuppository base
PolysorbatesSurfactants, Dispersants & Co-emulsifiers

Excipients Used in Injectable Products

The parenteral route covers all products administered by injection directly into the body’s issues.

This class of medicines can be divided into three groups:

  • injection into the skin (subcutaneous, intramuscular, & intracutaneous),
  • intraveneous infusions, and,
  • peridural and subarachnoid routes

Injectable products offer numerous advantages over other routes of administration, including precise and adjustable dosing, predictable bioavailability, and fast onset of action.

In acute-patient-care settings, injectable drugs are the main forms of drug administration.

Since injections introduce substances directly into the body bypassing many of the body’s defences, there are extra safeguards expected from excipients.

One of these is that they should be sterile, and if the volume of the product is large (>100ml), they should be free of pyrogens and endotoxins (fragments of bacterial cell walls).

A list of the 15 most commonly used excipients in injectable products and the roles in the formulation is below:

Excipient nameFunction
Arachis oilCarrier & Oleaginous vehicle
CresolPreservative
Benzyl alcoholPreservative
Dextrose (Glucose)Bulking agent & Cryoprotectant
EDTAChelating agent
Ethyl oleateCarrier and Solvent
Human serum albuminStabiliser
Hydrogenated castor oilSurfactant & Solubilising agent
Lecithin (and other phospholipids)Surfactant & Solubilising agent
Macrogol 15 HydroxystearateSurfactant & Solubilising agent
GlycerolCo-solvent
PolysorbateSurfactant & Solubilising agent
PolysorbatesSurfactant, Solubilising agent & Dispersant
Potassium or Sodium PhosphateBuffering agent
Sodium chlorideTonicity adjusting agent
Sodium hydroxidePH adjusting agent
Sodium citrateBuffering agent
Sodium metabisulfitePreservative & Antioxidant
Polyethylene glycolSolvent
Zinc chlorideTonicity adjusting agent
Hydrochloric acidPH adjuster

Excipient Safety Assessment

The issue of excipient safety is a major point of contention in public discourse, and possibly one of the major sources of misinformation on medical products.

Before any material can be used in a product as an excipient, regulatory agencies require manufacturers to undertake rigorous testing and guarantee that it is safe for use.

This has not always been the case – in fact, in the early days of the pharmaceutical industry, excipients were considered pharmacologically inert and rarely regulated.

This lack of control lead to many issues, including significant harm to the public. You can listen to our podcast on this through this link.

<iframe src=”https://anchor.fm/pharmacentral/embed/episodes/Introduction-Catastrophes-that-have-helped-shape-pharmaceutical-regulation-eq9ea1″ height=”102px” width=”400px” frameborder=”0″ scrolling=”no”></iframe>

Over the years, as products have become more complex and the ingredients used in them even more elaborate, safety testing of excipients is now mandatory.

Suffice to say, regulatory agencies, such the US FDA, MHRA and EMA, have approved lists for excipients, either in form of pharmacopoeia monographs or databases (e.g IIG Database, Dictionnaire Vidal or Japanese Pharmaceutical Excipients compendium) as well as standards for manufacture (e.g Good Manufacturing Practices) and distribution/handling (Good Distribution Practices) that manufacturers must comply with.

Read about excipient safety assessment here.

The bottom-line is that the pharmaceutical industry works through multiple checks and balances to ensure that quality and safety requirements are adhered to before any material can be used in a drug product.

 

Frequently Asked Questions About Excipients

What criteria are used to select excipients?

The main criteria for selection of an ingredient is functionality. Examples of the different functions were outlined above, but generally include:

  • maintainance of a product’s integrity (containment, stability, freedom from contamination, etc)
  • making up the volume
  • aiding in the release characteristics of the active ingredient
  • facilitating identification, etc.

But in addition to functional suitability, the excipient must be compatible with other excipients and the active. Incompatibilities can compromise product quality and safety of users.

Thus, the most suitable excipients for the job are selected, taking care that those that are selected have a genuine function in the product.

Indeed, product manufacturers are now required to state and justify the role of excipients in the product. It is no longer acceptable to add a material that does not have a clearly established and validated function.

For example, a preservative should not be included in sterile, single-dose products, such as injections or eye drops. As a general rule, only excipients that perform a needed function are required to be included int he formulation.

Which materials can be excipients?

In the USA, only materials officially recognised in the United States Pharmacopoeia-National Formulary (USP-NF) and/or listed in the US FDA Inactive Ingredients Database (IIG Database) can be used in pharmaceutical products as excipients.

The USP-NF defines the quality requirements for excipients in form of a monograph while the IIG Database shows which material is already in use and the types of products its used in.

The Europe Union does not have a bloc-wide list of approved excipients although individual countries have compendia that list approved materials for their jurisdictions.

There is however, a European Pharmacopoeia, which has excipient monographs similar to the USP-NF.

An important question is whether materials without a monograph or those not listed in official compendia be used as excipients?

Generally, a material not officially listed in a pharmacopoeia or recognised in compendia may still be used in pharmaceutical products. In deed there are various such products, including for example, butylene glycol and several others.

However, regulatory agencies require detailed assessment and evidence of that material’s safety, toxicity and quality profile. This can be time-consuming and expensive process, and for this reason, few manufacturers dare go down this route, preferring to use established/proven materials as excipients.

Which excipients should not be used in infants?

In 2008 the EU passed Regulation 1901/2006 on medicinal products for paediatric use, following which the European Medicines Agency published recommendations for pharmaceutical formulas intended for children (0-18 years old).

A few standout excipients in this regulation include:

ExcipientFunctionRegulatory Recommendation
Benzyl alcoholPreservativeNot to be given to neonates
EthanolSolvent and preservativeBest avoided in children under years old. The WHO proposes the following:Not more than 0.5% for children under 6 years old Not more than 5.0% for children between 6 and 12 years oldNot more than 10.0% for children over 12 years old
Propylene glycolSolventAvoid in children under 4 years old
Colouring agentsColouring & maskingShould be avoided in all paediatric products unless absolutely necessary. AZO dyes are banned

 

Which companies manufacture excipients?

Excipient manufacturers are a diverse group of companies, from public to private, small to large. You can see our compilation of the most innovative excipient manufacturers or the size of the excipients market by following through these links. Here, we provide a selection of the most important excipient companies currently:

CompanyCountry HQProduct Focus
BASFGermanyIbuprofen, Omega-3, Polxamer 188, Hydrogenated Castor oil, Povidone & Lactose
DupontUnited StatesSilicones & Elastomers
IFFUnited StatesMicrocrystalline cellulose, Flavours and Fragrances
ColorconUnited StatesFilm coatings
Evonik AGGermanySilica, Polymers, Carbomers and Antimicrobials
CARGILLUnited StatesCarbohydrate and polysaccharides
Lubrizol CorporationUnited StatesCarbomers
ShinEtsuJapanSilicones, Cellulose polymers
CrodaUnited KingdomOleochemicals
GattefosseFranceOleochemicals
Roquette FreiresFranceCarbohydrate and polysaccharides
Tereos Sugars & SweetenersFranceCarbohydrate and polysaccharides
JH NanhangChinaVinyl polymers (Povidones)
SolvayFranceSodium bicarbonate
AsahiJapanPolysaccharides & microcrystalline cellulose
Abitec CorporationUnited StatesOleochemicals
Angus Chemical CompanyUnited StatesBuffers and salts
Dow ChemicalUnited StatesPolymers & cellulosics
Meggle GroupGermanyPolysaccharides & microcrystalline cellulose
DFE PharmaThe NetherlandsPolysaccharides & microcrystalline cellulose
Tate & LyleUnited KingdomPolysaccharides & microcrystalline cellulose
CP KelcoUnited StatesHydrocolloids
AshlandUnited StatesFilm coatings, Povidones
JRS PharmaGermanyPolysaccharides & microcrystalline cellulose
SasolSouth AfricaOleofins
Eastman Chemical CompanyUnited StatesPolymers
Merck KGAAGermanyDiversified chemicals, Pigments & buffers
IOI OleochemicalsGermanyOleochemicals
FirmenichSwitzerlandFlavours and fragrances
Kerry GroupIrelandLactose, coatings & flavours
SPI PharmaUnited StatesODT systems, mannitol
CabotUnited StatesSilica
BudenheimGermanyCalcium salts
ImerysFranceTalc, calcium salts & kaolin
HallstarUnited StatesOleochemicals
BeneoGermanyPolysaccharides
InolexUnited StatesOleochemicals
Dr. Paul LohmannGermanyCalcium salts
Lonza AGSwitzerlandPreservatives & capsules
Nippon GohseiJapanPolyvinyl alcohol
CelaneseUnited StatesSweeteners
British SugarUnited KingdomSugar
WackerGermanySilicones and silica
WH GraceUnited StatesSilica
SeppicFranceFilm coatings
Novo NordiskDenmarkPreservatives
Mingtai Chemicals CoChina (Taiwan)Microcrystalline cellulose
AgranaAustriaStarch
CalumetCanadaPetrochemicals
NissoJapanHydroxypropylcellulose

 

Although PharmaCentral.com does not manufacture excipients, we have distribution arrangements and partnerships with many reputable firms. If you have any questions on any materials or would like to sample or purchase get in touch through here.

Should I avoid non-medical products that use excipients?

Since many excipients are chemically-derived industrial ingredients they may not sit well with some consumers of dietary nutraceutical products who prefer natural, eco-friendly and ‘clean’ labelled.

What’s useful to remember is that pharmaceutical excipient manufacturers mainly focus on achieving and maintaining functional performance and safety, which requires materials to undergo extra levels of processing and purification.

Ultimately, the choice to avoid dietary products with excipient-grade ingredients is down to personal choice and what people believe best suits their values and motives.

Where can I obtain more information on excipients?

There are many authoritative sites and places to get information on excipients:

You can of course, use our own PharmaCentral Products pages – where we have monographs of the most important and commonly used excipients listed. You will find all the information you need regarding any material. And the good thing is that it is 100% free.

 

Cited Literature and Sources Used

To ensure our content is accurate and scientifically sound, Pharmacentral implements a strict referencing policy. We only use peer-reviewed studies and reputable academic sources and authors.

Elder DP, Kuentz M, Holm R. Pharmaceutical excipients – quality, regulatory and biopharmaceutical considerations. Eur J Pharm Sci. 2016 May 25;87:88-99. doi: 10.1016/j.ejps.2015.12.018. Epub 2015 Dec 14. PMID: 26699228.

Fabiano V, Mameli C, Zuccotti GV. Paediatric pharmacology: remember the excipients. Pharmacol Res. 2011 May;63(5):362-5. Doi: 10.1016/j.phrs.2011.01.006. Epub 2011 Jan 15. PMID: 21241804.

Alison Haywood, Beverley D Glass. Pharmaceutical excipients – where do we begin? Australian Prescriber (Accessed October 2021).

Excipients – an overview (Science Direct)

Overview of pharmaceutical excipients used in tablets and capsules. (Accessed October 2021).